Showing posts with label Sequence and Series. Show all posts
Showing posts with label Sequence and Series. Show all posts

Thursday, June 25, 2020

Introduction to Geometric Progression

GEOMETRIC PROGRESSION(G.P.):

⮚A progression is called a G.P. if the ratio of it's each term to it's previous term is always constant. If       'a'  be the first term and 'r' be the common ratio then a, ar, ar2, ... ,arn-1 is a sequence of G.P . tn =               arn-1. 

GENERAL TERM OF A G.P.:

  •   nth term of G.P. i.e.  tn = arn-1. , where the common ratio (r) =  t2 /  t1 =  t3 /  t2 = ...
  • If G.P.  consists of ' n ' terms , then  pth term from the end = (n-p+1)th term from the beginning = arn-p. Also , the   pth   term from the end of the G.P. with the last term ' l ' and common ratio 'r'  is =  l(1/r)n-1 . 

SUM OF FIRST ' n ' TERMS OF A G.P.:

 Sum of first ' n ' terms of a G.P. is given by
             Sn = ∑   tn 
                  =   t1 +   t2  +   t3 + ... +   tn    
                  =   a + ar + ar2+ ... +arn-1
  •  Sn =  a(1-rn )/(1-r)  and  Sn = (a-lr)/(1-r) , [when | r | < 1. ] 
  •  Sn =  a(rn -1)/(r-1)  and  Sn = (lr-a)/(r-1) , [when | r | > 1. ]
  •  Sn = na  [ when r=1 ]

SUM OF INFINITE TERMS OF G.P.:

⮚ When n→∞ and | r | < 1 ( -1 < r < 1),      S  = a/(1-r).

⮚ When n→∞ and | r | ≥ 1 ,  S  does not exist.

GEOMETRIC MEAN(G.M.):

⮚ If a , b , c are in G.P.  , then  b/a = c/b  ⇒ b2= ac ⇒ b= √(ac)  is the G.M. of a and c.

      Similarly  G.M. of a , b , c  is   (abc)1/3 .

      G.M.  of   a1 , a2  , a3 , ... , an  is     (a1. a . a3  ...  .a)1/n         

  ⮚ Let n G.M.s are inserted between a & b . Let    G1 , G2  , G3 , ... , Gn   are n G.M.s ,

      then a ,  G1 , G2 , G3 , ... , Gn , b are in G.P. .

       Then common ratio ( r ) =  (b/a )1/n+1          

         So,   G1  =   ar   =   a . (b/a )1/n+1 

                  G2  =   ar2  =   a . (b/a )2/n+1 

                  ___________________________

                 Gn  =   arn =   a . (b/a )n/n+1 

PROPERTIES OF G.P. :

✪  If all the terms of a G.P. be multiplied or divided by the same non-zero constant , then it                 remains a G.P.  , with the same common ratio ' r '.  

✪  The reciprocal of the terms of a given G.P.  form a G.P. with common ratio as reciprocal of the         common ratio(r) of the original G.P. i.e. ' 1/r '.

✪  If each term of a G.P.  with common ratio ' r ' be raised to the same power k , the resulting              sequence also forms a G.P. with common ratio  rk  .

✪  In a finite G.P. , the product of terms equidistant from the beginning and the end is always the       same and is equal to the product of the first and last term i.e. if   a1 , a2  , a3 , ... , an   be in G.P.        . Then                a1. an  = a2 . an-1  =  a. an-2  = ... = ar . an-r+1          

✪  If  a1 , a2  , a3 , ... , an , ... is a G.P. of non-zero , non-negative terms , then  loga1 , loga2  ,log a3          , ... ,  logan , ...  is in A.P. and vice-versa.

✪  Three non-zero numbers a , b , c are in G.P. iff  b2= ac .

✪  If    ax1 , ax2, ax3, ... , axn   are in G.P. , then  x1 , x2  , x3 , ... , xn are in A.P. .

✪  If the first term of a G.P. of n terms is ' a ' and last term is ' l ' , then the product of all terms         of  the G.P.  is  (al )n/2 .

  ⮚ So, in the below tables , these are terms taken , which should be used in some kinds of questions in        G.P. as same as in the  A.P. .

                  TABLE-1 : When the product is given.

            No. of terms                        Terms taken 

 3 
  a/r , a , ar 
 4         a/ r3 , a/r , a/r , a/ r3 
 5 a/ r2 , a/r , a , a/r , a/ r2  

                   TABLE -2 : When the product is not given. 
       
         No. of terms                        Terms taken 
 3 
   a , ar , ar2 
 4    
             a , ar , ar2 ,  ar3 
 5
        a , ar , ar2, ar3ar4  


       So guys , this is all about the introduction of G.P. .      And on later, we will learn about                         Harmonic  Progression and it's properties . 
       Thanks for reading this post .😇😇😇 
                                     And Stay tuned guys . ✌✌✌



Wednesday, June 24, 2020

Introduction to Sequences and Series (Chapter-1)

PROGRESSION:

» A progression is a sequence whose terms a certain pattern i.e. the terms are arranged  under a definite     rule. 

ARITHMETIC PROGRESSION:

»  A sequence of numbers < tn  >is said to be in arithmetic progression (A.P) when the difference                t-  tn-1  is a constant ∀ n Ñ” N. This constant is called the  common difference and is denoted by 'd '.
»  If 'a' is the first term and 'd' is the common difference then the A.P can be represented as 
                                         a ,a+d ,a+2d ,a+3d ,...

GENERAL TERM OF AN A.P:

» nth term of an A.P i.e.  tn =a+(n-1)d.

SUM OF 'n' TERMS OF AN A.P:

» The sum of 'n' terms of the series is given by 

           Sn   =∑  tn   =  t+ t2    + t +... +tn 

                             = n/2 [ 2a+(n-1)d]    
       or,

           Sn   =n/2 [a+l].    [where a=first term  and l= last term]

  » NOTE:        tn   =   S-  Sn-1

  ARITHMETIC MEAN:

 » If three terms are in A.P then the middle term is called A.M between the other two.

    Ex.- a ,a+d ,a+2d are in A.P , then a+d is the A.M of a and (a+2d)

            i.e. a+d = [a+(a+2d)]/2

      ðŸŸ‡ A.M of a,b is = (a+b)/2.

     🟇 A.M of a,b,c is = (a+b+c)/3.

 » If  'n' terms are inserted between a & b i.e.  A1 ,A2 ,..., A are A.Ms that means  

     a , A1 ,A2 ,..., A , b are in A.P. Then the common difference is(d)=. (b-a)/(n+1). 

         Then  A1 = a + d = a+(b-a)/(n+1).

                   A2 = a + 2d = a+ 2[(b-a)/(n+1)].

                   --------------------------------------

                    An = a + nd = a+ n[ (b-a)/(n+1)].   

PROPERTIES of A.P:

 If a fixed number is added or subtracted i.e.a1士ka2士k , a3 å£«k ,... of given A.P , then the resulting       sequence is also an A.P with the common difference as that of given A.P .
If each term of an A.P is multiplied by a fixed number or divided by non-zero fixed number i.e
      ka1 , ka2 , ka3 ,...  ; a1/k , a2/k , a3 /k ,...[k≠0] , then the resulting sequence is also an A.P . Common          difference is multiplied by the fixed number.
The sum of terms of an A.P equidistant from the beginning and the end is equal to sum of first and         last term .        i.e.   a1  + an    = a+ an-1 =a+ an-2   and               so on.
If a1 , a2 , a3 ,... and b1 , b2 , b3 ,... are two A.Ps with common differences d and d' , then 
      a1+b1 , a2+b2 , a3+b3  ,... is also an A.P with common difference d+d'.
✮ The nth term of any sequence is linear expression in n , then the sequence is an A.P with the common difference is the coefficient of "n".
      
         Ex.- Let                tn= 2n+1.
                      put n=1,   t1= 2(1)+1=3
                      put n=2,   t22(2)+1=5               { d =2}
                      put n=3,   t32(3)+1=7
       Here, the common difference (d)= coefficient of n=2.
The sum of nth terms of any sequence is quadratic in n , then the sequence is an A.P with common difference twice the coefficient of n^2.
        Ex. - Let           Sn= 3n^2 + 2n+1.       
        As we know, tn =   S-  Sn-1
                   = (3n^2 + 2n+1) - [3(n-1)^2 + 2(n-1)+1]
               = 3n^2 +2n +1 -(3n^2+3-6n+2n-2+1)
               =  3n^2 +2n +1 -3n^2 -3 +6n -2n +2-1
               = 6n -1.                                           
         here d = 6 = twice of the coefficient of n^2.

     
  ➤ So, in the below tables , these are the terms taken , which should be used in some kind of questions in A.P . 
 TABLE -1: When the sum is given.
                  
               No. of terms                   Term taken
          3a-d , a , a+d                              
a-3d , a-d , a+d , a+3d
          5 a-2d , a-d , a , a+d , a+2d


           TABLE -2: When the sum is not given.
                  
     No. of terms                   Term taken
       3a , a+d , a+2d                                  
       4 a , a+d , a+2d , a+3d
       5 a , a+d , a+2d , a+3d , a+4d
 
                   Here is the sample question :-                                                                                                 


               So guys, this is all about the introduction of sequence and series and about the A.P.
               On later, we will learn about G.P and it's properties.
                 ∴ Stay tuned, for next session.😇






Search Box