Thursday, June 25, 2020

Introduction to Geometric Progression

GEOMETRIC PROGRESSION(G.P.):

⮚A progression is called a G.P. if the ratio of it's each term to it's previous term is always constant. If       'a'  be the first term and 'r' be the common ratio then a, ar, ar2, ... ,arn-1 is a sequence of G.P . tn =               arn-1. 

GENERAL TERM OF A G.P.:

  •   nth term of G.P. i.e.  tn = arn-1. , where the common ratio (r) =  t2 /  t1 =  t3 /  t2 = ...
  • If G.P.  consists of ' n ' terms , then  pth term from the end = (n-p+1)th term from the beginning = arn-p. Also , the   pth   term from the end of the G.P. with the last term ' l ' and common ratio 'r'  is =  l(1/r)n-1 . 

SUM OF FIRST ' n ' TERMS OF A G.P.:

 Sum of first ' n ' terms of a G.P. is given by
             Sn = ∑   tn 
                  =   t1 +   t2  +   t3 + ... +   tn    
                  =   a + ar + ar2+ ... +arn-1
  •  Sn =  a(1-rn )/(1-r)  and  Sn = (a-lr)/(1-r) , [when | r | < 1. ] 
  •  Sn =  a(rn -1)/(r-1)  and  Sn = (lr-a)/(r-1) , [when | r | > 1. ]
  •  Sn = na  [ when r=1 ]

SUM OF INFINITE TERMS OF G.P.:

⮚ When n→∞ and | r | < 1 ( -1 < r < 1),      S  = a/(1-r).

⮚ When n→∞ and | r | ≥ 1 ,  S  does not exist.

GEOMETRIC MEAN(G.M.):

⮚ If a , b , c are in G.P.  , then  b/a = c/b  ⇒ b2= ac ⇒ b= √(ac)  is the G.M. of a and c.

      Similarly  G.M. of a , b , c  is   (abc)1/3 .

      G.M.  of   a1 , a2  , a3 , ... , an  is     (a1. a . a3  ...  .a)1/n         

  ⮚ Let n G.M.s are inserted between a & b . Let    G1 , G2  , G3 , ... , Gn   are n G.M.s ,

      then a ,  G1 , G2 , G3 , ... , Gn , b are in G.P. .

       Then common ratio ( r ) =  (b/a )1/n+1          

         So,   G1  =   ar   =   a . (b/a )1/n+1 

                  G2  =   ar2  =   a . (b/a )2/n+1 

                  ___________________________

                 Gn  =   arn =   a . (b/a )n/n+1 

PROPERTIES OF G.P. :

✪  If all the terms of a G.P. be multiplied or divided by the same non-zero constant , then it                 remains a G.P.  , with the same common ratio ' r '.  

✪  The reciprocal of the terms of a given G.P.  form a G.P. with common ratio as reciprocal of the         common ratio(r) of the original G.P. i.e. ' 1/r '.

✪  If each term of a G.P.  with common ratio ' r ' be raised to the same power k , the resulting              sequence also forms a G.P. with common ratio  rk  .

✪  In a finite G.P. , the product of terms equidistant from the beginning and the end is always the       same and is equal to the product of the first and last term i.e. if   a1 , a2  , a3 , ... , an   be in G.P.        . Then                a1. an  = a2 . an-1  =  a. an-2  = ... = ar . an-r+1          

✪  If  a1 , a2  , a3 , ... , an , ... is a G.P. of non-zero , non-negative terms , then  loga1 , loga2  ,log a3          , ... ,  logan , ...  is in A.P. and vice-versa.

✪  Three non-zero numbers a , b , c are in G.P. iff  b2= ac .

✪  If    ax1 , ax2, ax3, ... , axn   are in G.P. , then  x1 , x2  , x3 , ... , xn are in A.P. .

✪  If the first term of a G.P. of n terms is ' a ' and last term is ' l ' , then the product of all terms         of  the G.P.  is  (al )n/2 .

  ⮚ So, in the below tables , these are terms taken , which should be used in some kinds of questions in        G.P. as same as in the  A.P. .

                  TABLE-1 : When the product is given.

            No. of terms                        Terms taken 

 3 
  a/r , a , ar 
 4         a/ r3 , a/r , a/r , a/ r3 
 5 a/ r2 , a/r , a , a/r , a/ r2  

                   TABLE -2 : When the product is not given. 
       
         No. of terms                        Terms taken 
 3 
   a , ar , ar2 
 4    
             a , ar , ar2 ,  ar3 
 5
        a , ar , ar2, ar3ar4  


       So guys , this is all about the introduction of G.P. .      And on later, we will learn about                         Harmonic  Progression and it's properties . 
       Thanks for reading this post .😇😇😇 
                                     And Stay tuned guys . ✌✌✌



No comments:

Post a Comment

Search Box