Wednesday, June 24, 2020

Introduction to Sequences and Series (Chapter-1)

PROGRESSION:

» A progression is a sequence whose terms a certain pattern i.e. the terms are arranged  under a definite     rule. 

ARITHMETIC PROGRESSION:

»  A sequence of numbers < tn  >is said to be in arithmetic progression (A.P) when the difference                t-  tn-1  is a constant ∀ n є N. This constant is called the  common difference and is denoted by 'd '.
»  If 'a' is the first term and 'd' is the common difference then the A.P can be represented as 
                                         a ,a+d ,a+2d ,a+3d ,...

GENERAL TERM OF AN A.P:

» nth term of an A.P i.e.  tn =a+(n-1)d.

SUM OF 'n' TERMS OF AN A.P:

» The sum of 'n' terms of the series is given by 

           Sn   =∑  tn   =  t+ t2    + t +... +tn 

                             = n/2 [ 2a+(n-1)d]    
       or,

           Sn   =n/2 [a+l].    [where a=first term  and l= last term]

  » NOTE:        tn   =   S-  Sn-1

  ARITHMETIC MEAN:

 » If three terms are in A.P then the middle term is called A.M between the other two.

    Ex.- a ,a+d ,a+2d are in A.P , then a+d is the A.M of a and (a+2d)

            i.e. a+d = [a+(a+2d)]/2

      🟇 A.M of a,b is = (a+b)/2.

     🟇 A.M of a,b,c is = (a+b+c)/3.

 » If  'n' terms are inserted between a & b i.e.  A1 ,A2 ,..., A are A.Ms that means  

     a , A1 ,A2 ,..., A , b are in A.P. Then the common difference is(d)=. (b-a)/(n+1). 

         Then  A1 = a + d = a+(b-a)/(n+1).

                   A2 = a + 2d = a+ 2[(b-a)/(n+1)].

                   --------------------------------------

                    An = a + nd = a+ n[ (b-a)/(n+1)].   

PROPERTIES of A.P:

 If a fixed number is added or subtracted i.e.a1ka2k , a3 k ,... of given A.P , then the resulting       sequence is also an A.P with the common difference as that of given A.P .
If each term of an A.P is multiplied by a fixed number or divided by non-zero fixed number i.e
      ka1 , ka2 , ka3 ,...  ; a1/k , a2/k , a3 /k ,...[k≠0] , then the resulting sequence is also an A.P . Common          difference is multiplied by the fixed number.
The sum of terms of an A.P equidistant from the beginning and the end is equal to sum of first and         last term .        i.e.   a1  + an    = a+ an-1 =a+ an-2   and               so on.
If a1 , a2 , a3 ,... and b1 , b2 , b3 ,... are two A.Ps with common differences d and d' , then 
      a1+b1 , a2+b2 , a3+b3  ,... is also an A.P with common difference d+d'.
✮ The nth term of any sequence is linear expression in n , then the sequence is an A.P with the common difference is the coefficient of "n".
      
         Ex.- Let                tn= 2n+1.
                      put n=1,   t1= 2(1)+1=3
                      put n=2,   t22(2)+1=5               { d =2}
                      put n=3,   t32(3)+1=7
       Here, the common difference (d)= coefficient of n=2.
The sum of nth terms of any sequence is quadratic in n , then the sequence is an A.P with common difference twice the coefficient of n^2.
        Ex. - Let           Sn= 3n^2 + 2n+1.       
        As we know, tn =   S-  Sn-1
                   = (3n^2 + 2n+1) - [3(n-1)^2 + 2(n-1)+1]
               = 3n^2 +2n +1 -(3n^2+3-6n+2n-2+1)
               =  3n^2 +2n +1 -3n^2 -3 +6n -2n +2-1
               = 6n -1.                                           
         here d = 6 = twice of the coefficient of n^2.

     
  ➤ So, in the below tables , these are the terms taken , which should be used in some kind of questions in A.P . 
 TABLE -1: When the sum is given.
                  
               No. of terms                   Term taken
          3a-d , a , a+d                              
a-3d , a-d , a+d , a+3d
          5 a-2d , a-d , a , a+d , a+2d


           TABLE -2: When the sum is not given.
                  
     No. of terms                   Term taken
       3a , a+d , a+2d                                  
       4 a , a+d , a+2d , a+3d
       5 a , a+d , a+2d , a+3d , a+4d
 
                   Here is the sample question :-                                                                                                 


               So guys, this is all about the introduction of sequence and series and about the A.P.
               On later, we will learn about G.P and it's properties.
                 ∴ Stay tuned, for next session.😇






No comments:

Post a Comment

Search Box