Sunday, June 28, 2020

THEOREMS ON PROBABILITY OF EVENTS( PART -2)

[If you are beginner in probability then you should read Probability Theorem (Part-1) before Read the below content]

THEOREM- 4:

                   For any 3 events A , B , C  P( A ⋃ B | C ) = P( A | C ) + P( B | C ) P( A ⋂ B | C )
 

PROOF:

      We have P( A ሀ B ) = P( A ) + P( B ) - P( A ⋂ B )
 ⇒P[( A ⋂ C) ⋃ ( B ⋂ C )] = P( A ⋂ C ) + P( B ⋂ C )     - P( A ⋂ B ⋂ C )
         Dividing both sides by P( C ), we get
 ⇒ P[( A ⋂ C) ⋃ ( B ⋂ C )] / P( C ) = P( A ⋂ C ) / P(         C ) + P( B ⋂ C ) / P( C )  - P( A ⋂ B ⋂ C ) / P( C )                                      , P( C ) > 0
                       
 ⇒  P[( A  ⋃ B ) ⋂ C ] / P( C ) = P( A | C ) + P( B | C ) -  P( A ⋂ B | C )
 ⇒   P[( A  ⋃ B ) | C ] = P( A | C ) + P( B | C ) - P( A ⋂ B | C ) 
                                                                        [Proved]

THEOREM - 5:

           For any 3 events A , B , C  P(A ⋂ B' | C ) + P( A ⋂ B | C ) = P( A | C ) , B' = complementary of event B.

PROOF :

          Given,
         P(A ⋂ B' | C ) + P( A ⋂ B | C )
     = P(A ⋂ B' ⋂ C ) / P( C ) + P( A ⋂ B ⋂ C ) / P( C )
     = [ P(A ⋂ B' ⋂ C ) + P( A ⋂ B ⋂ C ) ] / P( C ) 
     =  P(A ⋂ C ) / P( C ) 
     = P( A | C )                                  [Proved]
 

 THEOREM - 6:

         For any 3 events A , B , C defined on the sample space S such that B ⊂ C and P( A ) > 0 , P( C | A )  ≥ P( B | A ).

 PROOF:

      P( C | A ) = P( C ⋂ A ) / P( A )      [ By definition of conditional probability]

     = [ P( B ⋂ C ⋂ A ) ⋃ P( B' ⋂ C ⋂ A ) ] / P( A )

     =  [ P( B ⋂ C ⋂ A ) ] / P( A )  +  [ P( B' ⋂ C ⋂ A ) ] / P( A )
     =    P [ ( B ⋂ C | A ) + ( B' ⋂ C | A ) ]
    Since B ⊂ C ⇒ B ⋂ C = B
           ⇒ P( C | A ) = P( B | A ) + P( B' ⋂ C | A )
           ⇒ P( C | A ) ≥ P( B |  A ).                                         [Proved]

 Pair-wise Independent Events:

         Definition:  A set of events  A1 , A2  , ... , An  are said to be pair-wise independent  if  
          P(  Ai ⋂  Aj ) = P(  Ai ) . P(  Aj )  ∀ i ≠ j

 Conditions for Mutual Independence of ' n ' Events :

    Let S denote the sample space for a number of events . The events in S are said to be mutually independent if the probability of the simultaneous occurrence of (any) finite number of them is equal to the product of their separate probabilities.
               If  A1 , A2  , ... , An  are ' n ' events , then their mutual independence , we should have  
       (i)  P(  Ai ⋂  Aj ) = P(  Ai ) . P(  Aj ) ,    [ i ≠ j ; i , j = 1,2,...,n]
      (ii) P(  Ai  ⋂  Aj  ⋂  Ak ) = P( Ai ) . P( Aj ) . P( Ak ) ,  [ i ≠ j ≠ k ; i ,      j , k = 1,2,...,n]
                                    .                                     .
                                    .                                     .
                                    .                                     .
 P( A1 ⋂  A2 ⋂ ... ⋂ An ) = P( A1 ) . P( A2 ) . ... . P( An )

 

Remarks : 

       1. It may be observed that pair-wise or mutual independence of events A1 , A2  , ... , An  is defined only when P(  A1 ) ≠ 0 , for i = 1,2,...,n .
       2. If the events A and B are such that P( A )  ≠ 0 , P( B ) ≠ 0 and A independent of B , then B is independent of A.
      Proof :  We are given that , P( A | B) = P( A )       
                   [∵ A is independent of B ]
                   ⇒ P( A ⋂ B ) / P( B ) = P( A )
                   ⇒  P( A ⋂ B ) = P( A ) . P( B )
         ⇒ P( B ⋂ A ) / P( A ) = P( B )    [∵ P( A ) ≠ 0 ,                    A ⋂ B =  B ⋂ A ]
         ⇒ P( B | A ) = P( B )  


No comments:

Post a Comment

Search Box