Friday, June 26, 2020

THEOREMS ON PROBABILITY OF EVENTS (PART-1)

  Before you readout this blog I suggest you to read it's previous session i.e. " Introduction to Probability" , CLICK HERE to read. 

 THEOREM-1:

             Probability of the impossible event is zero i.e. p(Φ) = 0.
 

    PROOF:

              Impossible event contains no sample  point and hence the certain event S and   the impossible   event Φ are mutually     exclusive.  
     Hence      S U Φ = S  , [where S=    Sample space ]
             ∴      P( S U Φ ) = P( S )
             ⇒    P( S ) + P(Φ ) = P( S )
             ⇒    P( Φ ) = 0                                                                                           [Proved]

REMARK:

    It may be noted P( A )=0, does not imply  that  A is necessarily an empty set. In practice, probability ' 0 ' is assigned to the events which are so rare for example , let us consider the   random tossing of a coin. The event that the coin will stand erect on its edge,  is assigned the probability 0.

 

THEOREM -2:

           Probability of the complementary event Ā  of A is given by  P( Ā ) =1-P( A ).

    PROOF:

                 We know that A and Ā are dis-joint                          events.
             Moreover,          A U Ā = S 
                                    ⇒ P( A U Ā ) = P( S )
                                    ⇒ P( A ) + P( Ā ) = 1
                                    ⇒ P( Ā ) = 1 - P( A )                                                                               [Proved]

                                                

THEOREM - 3:

                      For any event A, 0 ≤ P( A ) ≤ 1.

PROOF:

         Clearly for any event A , 
               we have  Φ ⊆ A⊆ S
                         ⇒ | Φ | ⊆ | A | ⊆ | S |
                         ⇒ | Φ |/ | S | ≤ | A |/ | S | ≤ | S |/ | S |
                         ⇒  0  ≤ P( A ) ≤ 1        [Proved]

ADDITION RULE:

    For any two events A and B                

            P( A ⋃ B ) = P( A ) + P( B ) - P( A ⋂ B ).

  ★    If A and B are two mutually exclusive  events then,
                      P( A ⋃ B ) = P( A ) + P( B )                                            [ ∵ P( A ⋂ B ) = 0 ]
 ★    For any three events A  , B , C ,
                        
                  P( A ⋃ B ⋃ C )=P( A ) + P( B ) + P( C ) -      P( A ⋂ B ) - P(B ⋂ C ) - P(C ⋂ A ) + P(A ⋂ B ⋂ C)
 
    PROOF:
           Let us take A ⋃ B = D
      P( A ⋃ B ⋃ C ) = P( D ⋃ C ).                                   
      = P( D ) + P( C ) - P ( D ∩ C )
     = P( A ⋃ B ) + P( C ) -  P(( A ⋃ B ) ∩ C ))                 
     = P( A ⋃ B ) + P( C ) -  [ P(( A ⋂ C )  ⋃ ( B ⋂ C )) ]
     = P( A ) + P( B ) + P( C ) -P( A ⋂ B ) - [ P( A ⋂ C )  + P( B ⋂ C ) - P((A ⋂ B ) ⋂ ( B ⋂ C)) ].  
     =  P( A ) + P( B ) + P( C ) -P( A ⋂ B ) - P(B ⋂ C ) -  P(C ⋂ A ) + P(A ⋂ B ⋂ C)
                                                                                                                                            [Proved]
 ★  If A , B , C are the pair-wise mutually exclusive events , then 
                            
             P( A ⋃ B ⋃ C )=P( A ) + P( B ) + P( C ) .

 Example:
          A dice is thrown is thrown twice , find the 
          i) P( getting total is 8)
         ii) P( getting total is 10)
        iii) P( total is 8 and 10 )
        iv) P ( total is 8 or 10 )
         v) P( total is an even number)
        vi) P( total is not 8)
       vii) P(  tota is an even number but not 8 )

Answer-
  Since the dice is thrown twice , the sample space ( S ) = | 36 |
       i) Let A is the event of getting total is 8
         A={ (2,6) , (3,5) , (4,4) , (5,3) , (6,2) } , | A | = 5
                 so, P( A )= | A | / | S | = 5/36.

      ii) Let B is the event of getting total is 10
                   B={ (4,6) , (5,5) , (6,4) } , | B |=3
                 so, P( B )= | B | / | S | = 3/36= 1/12

     iii) P( getting total is 8 and 10)
           = P( A ⋂ B ) = P(Φ ) = 0

      iv)P( getting total is 8 pr 10)
          = P( A ⋃ B ) = P( A ) + P( B ) - P( A ⋂ B ) 
          = 5/36 + 3/36 - 0 = 8/36=2/9

       v) Let C be the event of total is an even      no. 
              P( C ) = 18/ 36 = 1/2

      vi) P( getting total is not 8)
            = 1 - P( A ) = 1- (5/36) = 31/ 36

   vii) P( getting total is an even no. but not 8)
             = P(getting total is an even no.) - 
                                                P(getting total is 8)
             = (18/36) - (5/36) = 13/36.
 
    
 
  

No comments:

Post a Comment

Search Box